IMPERIAZINE, A NEW ALKALOID FROM Petilium eduardi

U. T. Shakirova and R. Shakirov

The new C-nor-D-homosteroidal alkaloid imperiazine was isolated from the bulbous plant Petilium eduardi Rgl. (Liliaceae). The structure was established using spectral data.

Key words: Petilium eduardi, alkaloid, IR, mass and PMR spectra.

We isolated imperialine (1) [1-3] and the new alkaloid imperiazine (2), $C_{27}H_{43}NO_3$, mp 214-216°C from the aerial part of *Petilium eduardi* Rgl. collected in Babatag of Surkhandar'ya district during a study of alkaloids from plants of the *Petilium* (Liliaceae) genus [1].

Imperiazine (2) is a saturated tertiary base. The IR spectrum (KBr, v, cm⁻¹) contains absorption bands at 3502 (OH), 2870-2943 ($-CH_2-$ and $-CH_3$), 2787 (*trans*-quinolizidine), 1703 (C=O). The fingerprint region of 2 (<1500 cm⁻¹) is similar to that of the C-nor-D-homosteroid alkaloid 1 [3-5].

The mass spectrum of **2** has principal peaks for ions with m/z [M]⁺ 429, 412 [M - 17]⁺, 386, 384, 372, 358, 316, 289, 260, 236, 204, 180, 164, 162, 156, 155, 154, 152, 150, 140, 125, 124, 112 (100%), 111, and 98, which are characteristic of the mass spectrometric decomposition of imperialine [6].

The PMR spectrum of **2** has signals for protons of two tertiary and one secondary methyl and a multiplet for a proton geminal to a hydroxyl, like for **1** [2, 5]. However, the chemical shifts of the 27-CH₃ protons are at stronger field by 0.21 ppm compared with **1**. Other signals for methyls and the proton geminal to the hydroxyl are identical to **1** (Table 1).

The *trans*-quinolizidine band in the IR spectrum of **2** indicates that the ring is E and F *trans*-fused [7]. A comparison of the chemical shifts for the 19-CH₃ and 21-CH₃ protons of imperiazine and those for **1** [2, 5] indicates that rings A/B and B/C are *trans*-fused whereas C/D and D/E are *cis*-fused, like for imperialine [3]. The secondary hydroxyl is located on C-3; the carbonyl, on C-6. The presence in the mass spectrum of **2** of peaks for ions with m/z 156, 155, and 154, which are formed by cleavage of the C-13–C-18 and C-17–C-20 bonds of ring E, and the appearance of a signal for the 21-CH₃ protons as a singlet and its chemical shift indicate that the tertiary hydroxyl is located on C-20 and has the β -axial orientation [6, 8].

Comparison of the half-width $W_{1/2}$ of signals for the geminal hydroxyl and the chemical shifts of the 19-CH₃ with those for isoverticine, imperialine, and petine prove that the secondary hydroxyl is located on C-3 and has the β -equatorial orientation. The chemical shifts indicate that the 21-CH₃ and 27-CH₃ have the α -equatorial orientation [5, 9-11].

The elemental composition, number of functional groups, and heterocyclic skeleton of imperiazine are identical to those of **1** [3, 4]. These alkaloids differ in melting point, R_f , and orientation of the C-27 methyl.

Therefore, the data indicate that **2** is a C-nor-D-homosteroid alkaloid of the imperialine group and has the structure and configuration 3β , 20β -dihydroxy- 19β , 21α , 27α -trimethylcevaninone-6.

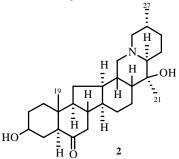


TABLE 1. Proton Chemical Shifts (CDCl₃, δ , ppm) and Spin—Spin Coupling Constants (J/Hz)

Compound	19-CH ₃ s	21-CH ₃ s	27-CH ₃ d	3-H m
(2)	0.68	1.01	0.77 (J=7)	3.51 (W _{1/2} =24)
(1)	0.67	0.99	0.98 (J=7)	3.45 (W _{1/2} =24)

EXPERIMENTAL

Silica gel (KSK) and $CHCl_3$ — C_2H_5OH — NH_4OH (25:1:0.2) were used for column (125-250 μ m) and thin-layer (50-80 μ m) chromatography.

IR spectra were recorded on a Perkin—Elmer System 2000 Fourier-IR spectrometer; PMR, on a Tesla BS-567A instrument at working frequency 100 MHz (in $CDCl_3$, HMDS internal standard, δ); mass spectra, in a Kratos MS 25RF mass spectrometer.

Imperialine (1) and Imperiazine (2). Treatment of the total alkaloids (50 g) with ether precipitates crystals of crude imperialine. Crude 1 was purified by recrystallization from methanol. The resulting methanol mother liquor was condensed to a small volume and dried. The solid was dissolved in CHCl₃ and separated on a silica-gel column with elution by CHCl₃ and then a CHCl₃—C₂H₅OH—NH₄OH (25:1:0.2) mixture. Thus, we also isolated from the initial fractions 1, mp 263-265°C (methanol), R_f 0.45; and from the next fractions, crude 2, which was purified by chromatography over a silica-gel column with elution by CHCl₃—C₂H₅OH (10:1). The eluate was dried. The solid was treated with acetone to precipitate crystals of pure 2, mp 214-216°C, R_f 0.37, 0.1 g.

REFERENCES

- 1. R. Shakirov and S. Yu. Yunusov, *Khim. Prir. Soedin.*, 3 (1980).
- 2. R. N. Nuriddinov and S. Yu. Yunusov, Khim. Prir. Soedin., 260 (1968).
- 3. S. Ito, Y. Fukasawa, and M. Miyashita, *Tetrahedron Lett.*, 3161 (1976).
- 4. R. Shakirov, R. N. Nuriddinov, and S. Yu. Yunusov, Khim. Prir. Soedin., 429 (1965).
- 5. R. N. Nuriddinov and S. Yu. Yunusov, *Khim. Prir. Soedin.*, 458 (1971).
- 6. R. N. Nuriddinov, R. Shakirov, and S. Yu. Yunusov, Khim. Prir. Soedin., 316 (1967).
- 7. F. Bohlmann, Ber., 2159 (1958).
- 8. H. Budzikiewicz, *Tetrahedron*, **20**, 2267 (1964).
- 9. K. Kaneko, N. Naruse, K. Haruki, and H. Mitsuhashi, Chem. Pharm. Bull., 28, 1345 (1980).
- 10. S. Ito, I. Stothers, and S. M. Kupchan, *Tetrahedron*, **20**, 913 (1964).
- 11. U. T. Shakirova and R. Shakirov, *Khim. Prir. Soedin.*, 524 (1994).